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NOWHERE DENSE CLASSES

A monotone graph class is closed under taking subgraphs (or
equivalently, is determined by forbidden subgraphs).

e For many questions, a monotone class is as complicated as
the class of all graphs iff it is somewhere dense.

@ Example: the dividing line for first-order model checking.
o Containing arbitrarily large cliques is bad.

A graph class C is somewhere dense if there is some k such that C
contains arbitrarily large k-subdivided cliques (or complete
bipartite graphs).
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@ First goal: monotone classes of relational structures
(partially ordered hypergraphs, ...)

@ Second goal: hereditary classes (graphs or relational
structures)

A hereditary graph class is closed under taking induced subgraphs
(or equivalently, is determined by forbidden induced subgraphs).

@ Example: the class of all cliques is a very simple hereditary
class, but is somewhere dense.
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(MONADIC) STABILITY AND NIP

@ Stability and NIP are classic dividing lines in model theory.

A class C is NIP if it does not encode all finite bipartite graphs.
A class C is stable if it does not encode arbitrarily large
half-graphs.

@ NIP is equivalent to certain natural set systems having
bounded VC-dimension.

A class C is monadically stable/NIP if it remains stable/NIP under
arbitrary vertex-colorings.
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A monotone graph class C is nowhere dense <= C is (monadically)
stable <= C is (monadically) NIP.

@ Provides a route for generalizing nowhere density.

Let C be a hereditary class of ordered graphs. Then C is (monadically)
NIP <= C has bounded twin-width.

@ Easy: For monotone C, somewhere dense implies not
monadically NIP.
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monadic NIP.

e With Laskowski, we give several characterizations of

If C is not monadically NIP, then C codes arbitrarily large grids (on
tuples).
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EXAMPLES OF GRIDS
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Figure: 2-subdivided K, ,,. Note ¢ is positive existential.
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Figure: Permutations
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COLLAPSE

If C is not monadically NIP, then the grid can be defined by a formula
with low quantifier-complexity (a boolean combination of existentials).

Theorem (B-Laskowski 224)
Let C be a hereditary class of relational structures.
Cis NIP <= C is monadically NIP.

C is stable <= C is monadically stable.

If C is monotone, then all these are equivalent.

@ Recall the collapse for nowhere dense graph classes.

@ Vertex coloring and passing to (induced) substructures are
in some sense equivalent.
@ Non-structure applications: growth rates and wqo
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STRUCTURAL CHARACTERIZATIONS

@ If C is monadically NIDP, its structures coarsely look like
linear orders/are 1-dimensional.

@ They have a nice notion of (in)dependence that induces a
quasi-order.

@ C is monadically NIP iff (something like) its “linear
clique-width” is bounded by a cardinal.
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Can the extra structure from monadic properties be used to improve
extremal combinatorial results in hereditary classes?

o Two references:

Erdds-Hajnal properties for powers of sparse graphs

Combinatorial and Algorithmic Aspects of Monadic Stability
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