Nowhere dense classes 00	Model theory 00	Monadic NIP 0000	A further question 0

Generalizing nowhere dense graph classes

Samuel Braunfeld (Charles University) Joint work with Chris Laskowski

July 27, 2022 CSGT

< □ > < @ > < E > < E > E のQ@

Nowhere dense classes 00	Model theory 00	Monadic NIP 0000	A further question 0

OVERVIEW

Nowhere dense classes

Nowhere dense classes •0	Model theory 00	Monadic NIP 0000	A further question 0

NOWHERE DENSE CLASSES

Definition

A *monotone graph class* is closed under taking subgraphs (or equivalently, is determined by forbidden subgraphs).

- For many questions, a monotone class is as complicated as the class of all graphs iff it is *somewhere dense*.
- Example: the dividing line for first-order model checking.
- Containing arbitrarily large cliques is bad.

Definition

A graph class C is *somewhere dense* if there is some k such that C contains arbitrarily large k-subdivided cliques (or complete bipartite graphs).

Nowhere dense classes ○●	Model theory 00	Monadic NIP 0000	A further question

GENERALIZATION GOALS

- First goal: monotone classes of relational structures (partially ordered hypergraphs, ...)
- Second goal: hereditary classes (graphs or relational structures)

Definition

A *hereditary graph class* is closed under taking *induced* subgraphs (or equivalently, is determined by forbidden *induced* subgraphs).

• Example: the class of all cliques is a very simple hereditary class, but is somewhere dense.

Nowhere dense classes	Model theory	Monadic NIP	A further question
00	••	0000	0

(MONADIC) STABILITY AND NIP

• *Stability* and *NIP* are classic dividing lines in model theory.

Definition

A class C is *NIP* if it does not encode all finite bipartite graphs. A class C is *stable* if it does not encode arbitrarily large half-graphs.

• *NIP* is equivalent to certain natural set systems having bounded VC-dimension.

Definition

A class *C* is *monadically stable/NIP* if it remains stable/NIP under arbitrary vertex-colorings.

Nowhere dense classes	Model theory	Monadic NIP	A further question
00	⊙●	0000	0

RELATION TO NOWHERE DENSITY

Theorem (Podewski-Ziegler '78, Adler-Adler '14)

A monotone graph class C is nowhere dense \iff C is (monadically) stable \iff C is (monadically) NIP.

• Provides a route for generalizing nowhere density.

Theorem (BGOSTT '21)

Let C be a hereditary class of ordered graphs. Then C is (monadically) $NIP \iff C$ *has bounded twin-width.*

• Easy: For monotone *C*, somewhere dense implies not monadically NIP.

Nowhere dense classes	Model theory	Monadic NIP	A further question
00	00	•000	0

FORBIDDEN CONFIGURATION: GRIDS

• With Laskowski, we give several characterizations of monadic NIP.

Lemma (Shelah '86, B.-Laskowski '21)

If C is not monadically NIP, then C codes arbitrarily large grids (on tuples).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三三 - のへで

Nowhere dense classes 00	Model theory 00	Monadic NIP 0●00	A further question 0

EXAMPLES OF GRIDS

$$\phi(x,y,z) := \exists z' (x R z \land z R z' \land z' R y)$$

Figure: 2-subdivided $K_{n,n}$. Note ϕ is positive existential.

Figure: Permutations

Nowhere dense classes 00	Model theory 00	Monadic NIP 00●0	A further question

COLLAPSE

Lemma (B.-Laskowski '22+)

If C is not monadically NIP, then the grid can be defined by a formula with low quantifier-complexity (a boolean combination of existentials).

Theorem (B.-Laskowski '22+)

Let C be a hereditary class of relational structures. C is NIP \iff C is monadically NIP. C is stable \iff C is monadically stable. If C is monotone, then all these are equivalent.

- Recall the collapse for nowhere dense graph classes.
- Vertex coloring and passing to (induced) substructures are in some sense equivalent.

・ロト・日本・モナ・モナ・ ヨー のへぐ

• Non-structure applications: growth rates and wqo

Nowhere dense classes	Model theory	Monadic NIP	A further question
00	00	000●	0

STRUCTURAL CHARACTERIZATIONS

- If *C* is monadically NIP, its structures coarsely look like linear orders/are 1-dimensional.
- They have a nice notion of (in)dependence that induces a quasi-order.

< □ > < @ > < E > < E > E のQ@

• *C* is monadically NIP iff (something like) its "linear clique-width" is bounded by a cardinal.

Nowhere dense classes	Model theory	Monadic NIP	A further question
00	00	0000	

EXTREMAL COMBINATORICS

Question

Can the extra structure from monadic properties be used to improve extremal combinatorial results in hereditary classes?

• Two references:

Erdős-Hajnal properties for powers of sparse graphs Combinatorial and Algorithmic Aspects of Monadic Stability

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □